

INGRESO AL ITBA

Escuela de Ingeniería

Materia: Química

CONTENIDO

I. Fundamentos de la Química.

Materia y energía. Estados de la materia. Propiedades de la materia. Sistemas Materiales. Sustancias, compuestos, elementos y mezclas.

II. Estructura Atómica.

La estructura de los átomos. Partículas fundamentales: protones, neutrones y electrones. Número atómico y número de masa. Isótopos. Masa atómica relativa y absoluta. Unidad de masa atómica. Abundancia isotópica. El átomo de Bohr. Descripción del átomo según la mecánica cuántica. Números cuánticos. Orbitales atómicos. Configuraciones electrónicas.

III. Tabla Periódica.

Clasificación periódica de los elementos. Su relación con la configuración electrónica. Períodos y grupos. Elementos representativos, de transición y de transición interna. Metales, no metales y metaloides. Propiedades periódicas.

IV. Uniones Químicas.

Unión iónica. Unión covalente simple y múltiple y covalente dativa. Regla del octeto, limitaciones. Fórmulas de Lewis.

V. Fórmulas Químicas.

Concepto de número de oxidación. Fórmulas y nomenclaturas de óxidos covalentes, óxidos iónicos, hidróxidos, hidróxidos, oxoácidos, sales neutras y sales hidrogenadas.

VI. Estequiometría.

Átomos y moléculas. Masa molecular relativa y absoluta relativa. Concepto de mol. Composición porcentual. Ecuaciones químicas. Cálculos que se basan en ecuaciones químicas. Concepto de: pureza, reactivo limitante y rendimiento porcentual.

VII. Gases.

El estado gaseoso: comparación con el estado sólido y el estado líquido. Teoría cinética molecular. Ecuación de estado. Ecuación general de los gases ideales. Mezclas gaseosas. Presiones parciales. Ley de Dalton. Gases reales. Ecuación de van der Waals.

VIII. Soluciones.

Soluto y solvente. Soluciones saturadas, no saturadas y sobresaturadas. Solubilidad. Formas de expresión de concentración: porcentaje en masa y/o volumen, molaridad, molalidad, fracción molar. Dilución.

IX. Equilibrio químico.

Equilibrio homogéneo. Expresión de la constante de equilibrio: Kc y Kp. Relación entre Kc y Kp. Equilibrio heterogéneo. Predicción de la dirección de una reacción, cociente de reacción Q. Cálculo de las concentraciones de equilibrio. Factores que afectan el equilibrio químico, Principio de Le Chatelier.

X. Ácidos y bases.

Teorías de Arrhenius y de Brönsted. Autoionización del agua. pH y pOH. Valoración ácido-base.

XI. Reacciones de Oxido-Reducción.

Concepto de oxidación, reducción, agente oxidante y agente reductor. Balanceo de ecuaciones redox: método del ion-electrón. Valoración redox.

XII. Electrólisis. Celdas Electrolíticas.

Electrólisis más comunes de electrolitos fundidos y en solución acuosa. Aspectos cuantitativos de la electrólisis: Leyes de Faraday.

XIII. Nociones de Química Orgánica.

Compuestos orgánicos. Hidrocarburos: clasificación y nomenclatura. Alcanos: reacción de combustión completa. Alquenos y Alquinos: reacciones de combustión completa y de adición. Regla de Markovnikov. Hidrocarburos aromáticos: principales reacciones. Derivados mono, di y tri sustituidos. Orientadores: Grupos sulfónico, nitro, alquilo y halógenos. Isomería: isómeros estructurales (de cadena, de posición y de función). Isomería geométrica: isómeros cis-trans. Halogenuros de alquilo. Alcoholes y fenoles, aldehídos, cetonas, ácidos carboxílicos, ésteres, éteres, aminas y amidas; nomenclatura, propiedades y reacciones más importantes.

Bibliografía

"QUIMICA ", octava edicion . K. W. Whitten, R. E. Davis, M. L. Peck y G. G. Stanley . CENGAGE , Learning . Guías de problemas y ejercicios adicionales, editados por la cátedra