Instituto Tecnológico de Buenos Aires

Quasi-analytical Perturbation Analysis of the Generalized Nonlinear Schrödinger Equation

P. I. Fierens pfierens@itba.edu.ar

CONICET

Collaboration

J. Bonetti S. M. Hernandez D. F. Grosz

E. Temprana

Generalized Nonlinear Schrödinger Eq.

Pulse propagation in single-mode nonlinear fibers

$$\frac{\partial A}{\partial z} - i\hat{\beta}A = i\hat{\gamma}A(z,T) |A(z,T)|^2.$$

Generalized Nonlinear Schrödinger Eq.

Pulse propagation in single-mode nonlinear fibers

$$\frac{\partial A}{\partial z} - i\hat{\beta}A = i\hat{\gamma}A(z,T) |A(z,T)|^2.$$

$$\hat{\beta} = \sum_{k>2} \frac{i^k \beta_k}{k!} \frac{\partial^k}{\partial T^k}$$

Generalized Nonlinear Schrödinger Eq.

Pulse propagation in single-mode nonlinear fibers

$$\frac{\partial A}{\partial z} - i\hat{\beta}A = i\hat{\gamma}A(z,T) |A(z,T)|^2.$$

$$\hat{\beta} = \sum_{k \ge 2} \frac{i^k \beta_k}{k!} \frac{\partial^k}{\partial T^k}$$

$$\hat{\gamma} = \sum_{k \ge 0} \frac{i^k \gamma_k}{k!} \frac{\partial^k}{\partial T^k}$$

$$\hat{\gamma} = \sum_{k \ge 0} \frac{i^k \gamma_k}{k!} \frac{\partial^k}{\partial T}$$

Analytical solutions to the GNLSE

Inverse-scattering

- Solitonic solutions (Zakharov 1972)
- Some simplifying assumptions such as neglecting higher-order dispersion

Analytical solutions to the GNLSE

Inverse-scattering

- Solitonic solutions (Zakharov 1972)
- Some simplifying assumptions such as neglecting higher-order dispersion

Akhmediev breathers

- Family of periodic solutions (Akhmediev and Korneev 1986)
- Integrability in more complex cases, but still a limited number of solutions

Analytical solutions to the GNLSE

Why do we care?

- Exact solutions of simplified versions provide important insight
- They cannot give a precise description in general ⇒ the GNLSE is usually studied by means of simulations

Our work

A particular case

- Propagation of a CW pump + noise
- (Technical + quantum) Noise is always present

Our work

6/22

A particular case

- Propagation of a CW pump + noise
- (Technical + quantum) Noise is always present

Didn't I talk about this 2 years ago?

- Yes! @ Denver: first order linear perturbation (modulation instability MI)
- Problem 1: undepleted pump ⇒ short distances
- Problem 2: disregards cascading four-wave mixing effect

Stationary solution + Perturbation

$$\frac{\partial \vec{\tilde{a}}(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}(\zeta,\Omega) + \vec{\tilde{N}}(\vec{\tilde{a}}(\zeta,\Omega))$$

Stationary solution + Perturbation

$$\frac{\partial \vec{\tilde{a}}(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}(\zeta,\Omega) + \vec{\tilde{N}}(\vec{\tilde{a}}(\zeta,\Omega))$$

Normalized distance: $\zeta = \gamma_0 P_0 z$

Perturbation:
$$A(\zeta, T) = \sqrt{P_0} [1 + a(\zeta, T)] e^{i\zeta}$$

Fourier transform:
$$\vec{\tilde{a}}(\zeta,\Omega) = \begin{bmatrix} \tilde{a}(\zeta,\Omega) \\ \tilde{a}^*(\zeta,-\Omega) \end{bmatrix}$$

Stationary solution + Perturbation

$$\frac{\partial \vec{\tilde{a}}(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}(\zeta,\Omega) + \vec{\tilde{N}}(\vec{\tilde{a}}(\zeta,\Omega))$$

Normalized distance: $\zeta = \gamma_0 P_0 z$

Perturbation:
$$A(\zeta,T) = \sqrt{P_0} [1 + a(\zeta,T)] e^{i\zeta}$$

Fourier transform:
$$\vec{a}(\zeta,\Omega) = \begin{bmatrix} \tilde{a}(\zeta,\Omega) \\ \tilde{a}^*(\zeta,-\Omega) \end{bmatrix}$$

Linear term:
$$\mathbf{H}(\Omega) = i \begin{bmatrix} B(\Omega) & \tilde{\gamma}(\Omega) \\ -B(-\Omega) & -\tilde{\gamma}(-\Omega) \end{bmatrix}$$

Stationary solution + Perturbation

$$\frac{\partial \vec{\tilde{a}}(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega)\vec{\tilde{a}}(\zeta,\Omega) + \vec{\tilde{N}}(\vec{\tilde{a}}(\zeta,\Omega))$$

Stationary solution + Perturbation

$$\frac{\partial \vec{\tilde{a}}(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}(\zeta,\Omega) + \vec{\tilde{N}}(\vec{\tilde{a}}(\zeta,\Omega))$$

•
$$B(\Omega) = \tilde{\beta}(\Omega) + 2\tilde{\gamma}(\Omega) - 1$$

•
$$\tilde{\beta}(\Omega) = \frac{1}{\gamma_0 P_0} \sum_{m=2}^{M} \frac{(-1)^m}{m!} \beta_m \Omega^m, \, \tilde{\gamma}(\Omega) = \frac{1}{\gamma_0} \sum_{n=0}^{N} \frac{(-1)^n}{n!} \gamma_n \Omega^n$$

$$\begin{split} \tilde{N}(\tilde{a}) &= \left[\tilde{a}(\zeta,\Omega) * \overline{\tilde{a}}(\zeta,-\Omega)\right] + \tilde{a}(\zeta,\Omega) * \left[\tilde{a}(\zeta,\Omega) + \overline{\tilde{a}}(\zeta,-\Omega)\right] + \\ \tilde{a}(\zeta,\Omega) * \left[\tilde{a}(\zeta,\Omega) * \overline{\tilde{a}}(\zeta,-\Omega)\right] \end{split}$$

Modulation instability

Linear perturbation analysis

$$\frac{\partial \vec{\tilde{a}}_1(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}_1(\zeta,\Omega)$$

Modulation instability

Linear perturbation analysis

$$\frac{\partial \vec{\tilde{a}}_1(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}_1(\zeta,\Omega)$$

Noisy solution: $\langle |\tilde{a}(0,\Omega)|^2 \rangle = s$

$$\left\langle |\tilde{a}_1(\zeta,\Omega)|^2 \right\rangle \approx s + \left(e^{2G_1(\Omega)\zeta} - 1 \right) |A_1(\Omega)|^2 s.$$

Modulation instability

Linear perturbation analysis

$$\frac{\partial \vec{\tilde{a}}_1(\zeta,\Omega)}{\partial \zeta} = \mathbf{H}(\Omega) \vec{\tilde{a}}_1(\zeta,\Omega)$$

Noisy solution: $\langle |\tilde{a}(0,\Omega)|^2 \rangle = s$

$$\left\langle |\tilde{a}_1(\zeta,\Omega)|^2 \right\rangle \approx s + \left(e^{2G_1(\Omega)\zeta} - 1 \right) |A_1(\Omega)|^2 s.$$

Motivation

This result motivates the following perturbative ansatz

Higher-order perturbation

Perturbative ansatz

$$\tilde{a}(\zeta,\Omega) \approx \sqrt{s}e^{i\phi_0(\zeta,\Omega)} + \sum_{n=1}^{\infty} \left(e^{G_n(\Omega)\zeta} - 1\right) A_n(\Omega) \sqrt{s^n} e^{i\phi_n(\zeta,\Omega)}.$$

Higher-order perturbation

Perturbative ansatz

$$\tilde{a}(\zeta,\Omega) \approx \sqrt{s}e^{i\phi_0(\zeta,\Omega)} + \sum_{n=1}^{\infty} \left(e^{G_n(\Omega)\zeta} - 1\right) A_n(\Omega) \sqrt{s^n} e^{i\phi_n(\zeta,\Omega)}.$$

Simplifying assumptions

- $\langle e^{i\phi_n(x,\mu)} \rangle = 0$
- $\langle e^{i(\phi_n(x,\mu)-\phi_m(y,\nu))}\rangle = 0$ if either $n \neq m, x \neq y$ or $\mu \neq \nu \longrightarrow$ similar to the 'random phase' hypothesis in optical wave turbulence (Picozzi et al. 2014)

Higher-order gain

Gain

$$G_n(\Omega) \approx \max_{\mu} \left[G_1(\mu) + G_{n-1}(\Omega - \mu) \right]$$

- Arises from the convolutions in the nonlinear operator
- Largest gain dominates → simplification of the convolution integrals
- Incorporates the gain due to the perturbations amplified by G_n acting as n-th order 'pumps': cascading FWM effect

Higher-order gain

Spectrum

Perturbation spectrum

$$|A_{1}(\Omega)|^{2} = \frac{\left(\frac{B(\Omega) + B(-\Omega)}{2}\right)^{2} + G_{1}^{2}(\Omega) + \tilde{\gamma}^{2}(\Omega)}{2G_{1}^{2}(\Omega)}$$
$$|A_{n}(\Omega)| \approx \Delta_{\Omega}^{n-1} J(G_{n}(\Omega), \Omega)$$
$$J(g, \Omega) = \frac{\sqrt{\left|\overline{B}(-\Omega) - ig\right|^{2} \left|\tilde{\gamma}(\Omega)\right|^{2} + \left|\overline{C}(-\Omega)\right|^{4}}}{\left|\overline{B}(\Omega) + ig\right| \left|\overline{B}(-\Omega) - ig\right| - \tilde{\gamma}(\Omega)\tilde{\gamma}(-\Omega)\right|}$$

Experiment

- A 770 m-long, dispersion-stabilized Highly-Nonlinear Fiber (Kuo et al. 2012)
- 30 dBm-pump laser at 1590 nm

Experiment

- A 770 m-long, dispersion-stabilized Highly-Nonlinear Fiber (Kuo et al. 2012)
- 30 dBm-pump laser at 1590 nm

Simulations

- Same parameters as the experiment
- $\gamma_0 = 8.7 \text{ W}^{-1} \text{Km}^{-1}$, $\beta_2 = -3.9198 \text{ ps}^2/\text{km}$, $\beta_3 = 0.1267$ ps^3/km , $\beta_4 = 1.7594 \times 10^{-4} ps^4/km$

Experimental results

Numerical results - 250 m

Numerical results - 500 m

Numerical results - 750 m

P. I. Fierens

18/22

Numerical results - 1000 m

Experiment: Excellent agreement

Experiment: Excellent agreement

Simulations: Good agreement even after 1 km ($> 8 L_{NL}$)

Experiment: Excellent agreement

Simulations: Good agreement even after 1 km ($> 8 L_{NL}$)

Approximation order: n = 8

Experiment: Excellent agreement

Simulations: Good agreement even after 1 km ($> 8 L_{NL}$)

Approximation order: n = 8

Higher order: What is the influence of higher-order terms?

Approximation orders

Results

Results

Higher order perturbation: Beyond the MI approach

Results

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and

simulations with relatively simple equations

Results

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and

simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

Results

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and

simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

Future work

Results

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and

simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

Future work

More insights: What other conclusions/applications can be derived from our simple expressions?

Results

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and

simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

Future work

More insights: What other conclusions/applications can be derived from our simple expressions?

Simplification: Is there a simple way to arrive to our results?

Bibliography I

- NN Akhmediev and VI Korneev (1986). "Modulation instability and periodic solutions of the nonlinear Schrödinger equation". In: *Theoretical and Mathematical Physics* 69.2, pp. 1089–1093.
- Bill P.-P. Kuo et al. (2012). "Dispersion-stabilized highly-nonlinear fiber for wideband parametric mixer synthesis". In: *Opt. Express* 20.17, pp. 18611–18619. DOI: 10.1364/OE.20.018611.
- A. Picozzi et al. (2014). "Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics". In: *Physics Reports* 542.1. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, pp. 1–132. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2014.03.002.

Bibliography II

Vladimir E. Zakharov (1972). "Collapse of Langmuir waves".

In: Soviet Physics JETP 35, pp. 908–914.