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Generalized Nonlinear Schrodinger Eq.
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Generalized Nonlinear Schrodinger Eq.
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Perturbation of the GNLSE
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Analytical solutions to the GNLSE

 Solitonic solutions (Zakharov 1972)

» Some simplifying assumptions such as neglecting
higher-order dispersion
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Analytical solutions to the GNLSE

 Solitonic solutions (Zakharov 1972)

» Some simplifying assumptions such as neglecting
higher-order dispersion

¢ Family of periodic solutions (Akhmediev and Korneev
1986)

¢ Integrability in more complex cases, but still a limited
number of solutions
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Analytical solutions to the GNLSE

» Exact solutions of simplified versions provide important
insight

» They cannot give a precise description in general = the
GNLSE is usually studied by means of simulations
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Our work

¢ Propagation of a CW pump + noise

¢ (Technical + quantum) Noise is always present
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Our work

» Propagation of a CW pump + noise

¢ (Technical + quantum) Noise is always present

Didn’t I talk about this 2 years ago?

* Yes! @ Denver: linear perturbation (modulation
instability - MI)
» Problem 1: undepleted pump = short distances

» Problem 2: disregards cascading four-wave mixing effect
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Pump + Noise

— H(Q)(¢, Q) + N(@(¢, Q)
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Pump + Noise

— H(Q)(¢, Q) + N(@(¢, Q)

Normalized distance: { = yyPgz

Perturbation: A((,T) =Py [l +a((,T)] e
Fourier transform: (¢, Q) = [&fl((g’?g)z)]
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Pump + Noise

(¢, Q) _ H(Q)F(¢, Q) + NG Q)

Normalized distance: { = yyPgz

Perturbation: A((,T) =Py [l +a((,T)] e
Fourier transform: ~ a((, Q) = [&fl((g’?g)z)]
Linear term: H(Q) =i {_ggs_})m _zg?g)]

. , e _ [ AN (¢, )
Nonlinear term: N(a(¢,Q)) = {:Y(_Q)N* (ﬁ(C,Q))}

Perturbation of the GNLSE
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Pump + Noise

— H(Q)(¢, Q) + N((¢, Q)
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Pump + Noise
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Modulation instability

851(€7 Q)

oe = HOA(EO)
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Modulation instability

01 (¢, Q)
a¢

(mC.QF) ~ s+ (9 1) |A@)s.

= H(Q)m (¢, Q)
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Modulation instability

(mC.QF) ~ s+ (9 1) |A@)s.

This result motivates the following perturbative ansatz
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Higher-order perturbation

A(C, Q) ~ Ve G | Z (ecn(sz)c _ 1) A ()54 (G0,

n=1
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Higher-order perturbation

A(C, Q) ~ Ve G | Z (ecn(sz)c _ 1) A ()54 (G0,

n=1

) <ei¢n(xall')> e 0

. <ei(¢"(x’“)_¢'"(y”’))> = 0if eithern #m,x #yorp#v —
similar to the ‘random phase” hypothesis in optical wave
turbulence (Picozzi et al. 2014)
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Higher-order gain

Gn(€2) ~ max Gy () + Gn-1(2 — )]

¢ Arises from the convolutions in the nonlinear operator

 Largest gain dominates — simplification of the
convolution integrals

¢ Incorporates the gain due to the perturbations amplified
by G, acting as n-th order ‘pumps’: [SEle1e ST RS e,
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Higher-order gain
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Spectrum
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Evaluation of the approximation

» A 770 m-long, dispersion-stabilized Highly-Nonlinear
Fiber (Kuo et al. 2012)

¢ 30 dBm-pump laser at 1590 nm
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Evaluation of the approximation

» A 770 m-long, dispersion-stabilized Highly-Nonlinear
Fiber (Kuo et al. 2012)

¢ 30 dBm-pump laser at 1590 nm

¢ Same parameters as the experiment
o v =87 W Km™!, B, = —3.9198 ps? /km, 35 = 0.1267
ps®/km, By = 1.7594 x 10~* ps*/km
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Experimental results
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Numerical results - 250 m
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Numerical results - 500 m
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Numerical results - 750 m
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Numerical results - 1000 m
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Evaluation of the approximation

Experiment: Excellent agreement

20 /22 P. I. Fierens Perturbation of the GNLSE



Evaluation of the approximation

Experiment: Excellent agreement
Simulations: Good agreement even after 1 km (> 8 Lny,)
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Evaluation of the approximation

Experiment: Excellent agreement
Simulations: Good agreement even after 1 km (> 8 Lny,)

Approximation order: n =8
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Evaluation of the approximation

Experiment: Excellent agreement

Simulations: Good agreement even after 1 km (> 8 Lny,)
Approximation order: n =8

Higher order: What is the influence of higher-order terms?
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Approximation orders
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Conclusions
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Conclusions

Higher order perturbation: Beyond the MI approach
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Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and
simulations with relatively simple equations
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Conclusions

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and
simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

More insights: What other conclusions/applications can be
derived from our simple expressions?
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Conclusions

Higher order perturbation: Beyond the MI approach

Evaluation: Good agreement with experiments and
simulations with relatively simple equations

Insight: Cascading four-wave mixing effect exposed

More insights: What other conclusions/applications can be
derived from our simple expressions?

Simplification: Is there a simple way to arrive to our results?
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