Spectral dynamics of noise-seeded modulation instability

International Conference on Applications in Nonlinear Dynamics
2016

P. I. Fierens, S. M. Hernandez, J. Bonetti and D. F. Grosz

1st September 2016
Introduction

Modulation instability

Propagation of a CW in an optical fiber is unstable \rightarrow breaks up into pulses

Vast literature

- and many more...
Rekindled interest in MI

Supercontinuum generation

Narrowband input to an optical fiber $\xrightarrow{\text{nonlinearity}}$ wideband signal

Rogue waves

High-amplitude and rare waves that ‘appear from nowhere’

Anything left unsaid?

40 years of research! Should I end my talk now?

- Most of the analyses of MI do not include all details relevant to optical fibers. One exception: Béjot et al. (2011)
- Not a lot of work on (quasi-)analytical approaches to the interaction of noise and nonlinearity in MI

In this talk

- A complete analysis of the spectral evolution of a perturbation to a CW
- First analytical results on input noise + MI
- Some recent results on a noisy input
- Ongoing work...
Applications

What are we interested in?

- Supercontinuum generation in the mid IR
 - Molecular fingerprint region
 - Applications in metrology, tomography, isotope separation, ...
 - Lack of sources in some bands
- Intense pulses - rogue waves
- Parametric amplification
Spectral dynamics of noise-seeded modulation instability

Propagation in optical fibers

Generalized nonlinear Schrödinger equation

\[\frac{\partial A}{\partial z} - i\hat{\beta}A = i\hat{\gamma}A(z, T) \int_{-\infty}^{+\infty} R(T') |A(z, T - T')|^2 dT', \tag{1} \]

- Dispersion:
 \[\hat{\beta} = \sum_{m \geq 2} \frac{i^m}{m!} \beta_m \frac{\partial^m}{\partial T^m} \]

- Nonlinearity:
 \[\hat{\gamma} = \sum_{n \geq 0} \frac{i^n}{n!} \gamma_n \frac{\partial^n}{\partial T^n} \]

- Raman scattering: \[R(T') = (1 - f_R)\delta(T) + f_R h(T) \]
Perturbation to the stationary solution

\[A(z, T) = \left(\sqrt{P_0} + a \right) e^{i\gamma_0 P_0 z} = A_s + ae^{i\gamma_0 P_0 z} \]

- **Input power:** \(P_0 \)
- **Perturbation:** \(a(z, T) \)

Linear terms in the frequency domain

\[\frac{\partial \tilde{a}(z, \Omega)}{\partial z} + \tilde{N}(\Omega) \tilde{a}(z, \Omega) = \tilde{M}(\Omega) \tilde{a}^*(z, -\Omega), \]

- **Frequency:** \(\Omega = \omega - \omega_0 \)
- **\(\tilde{N}(\Omega) \):**
 \[\tilde{N}(\Omega) = -i \left[\tilde{\beta}(\Omega) + P_0 \tilde{\gamma}(\Omega) \left(1 + \tilde{R}(\Omega) \right) - P_0 \gamma_0 \right] \]
- **\(\tilde{M}(\Omega) \):**
 \[\tilde{M}(\Omega) = iP_0 \tilde{\gamma}(\Omega) \tilde{R}(\Omega) \]
Perturbation to the stationary solution

Ansatz: \(a(z, \Omega) = D \exp(iK(\Omega)z) \)

\[
K(\Omega) = -\tilde{B}(\Omega) \pm K_D(\Omega) = -\tilde{B}(\Omega) \pm \sqrt{\tilde{B}^2(\Omega) - \tilde{C}(\Omega)}
\]

- \(\tilde{B}(\Omega) \) and \(\tilde{C}(\Omega) \) are complex functions of the parameters
- Agrees with Béjot \textit{et al.} (2011)
Modulation-instability gain

Only self-steepening: $\gamma_1 = \gamma_0 \tau_{sh}$, $\gamma_n = 0$ for $n \geq 2$

$$K(\Omega) = \tilde{\beta}_o + P_0 \gamma_0 \tau_{sh} \Omega (1 + \tilde{R}) \pm \sqrt{\left(\tilde{\beta}_e + 2\gamma_0 P_0 \tilde{R}\right) \tilde{\beta}_e + P_0^2 \gamma_0^2 \tau_{sh}^2 \Omega^2 \tilde{R}^2}.$$

- Well-known facts about MI gain $= 2\text{Im}\{K(\Omega)\}$:
 - It does not depend on odd terms of the dispersion relation
 - Self-steepening enables a gain even in a zero-dispersion fiber
 - In the large power limit, it is independent of the dispersion and it is dominated by Raman:

$$|g(\Omega)| \approx 2P_0 \gamma_0 \tau_{sh} |\Omega| \cdot |\text{Im } \tilde{R}(\Omega)|.$$
Pump power: 100 W (left) and 5 kW (right)

With Raman (G_3 and G_4) and with self-steepening (G_2 and G_4)
Spectral evolution

Spectrum

\[\tilde{a}(z, \Omega) = e^{-i\tilde{B}(\Omega)z} \frac{\tilde{M}(\Omega) \sin(K_D(\Omega)z) \tilde{a}^*(0, -\Omega) + e^{-i\tilde{B}(\Omega)z} \left[K_D(\Omega) \cos(K_D(\Omega)z) - \left(\tilde{N}(\Omega) - i\tilde{B}(\Omega) \right) \sin(K_D(\Omega)z) \right] \tilde{a}(0, \Omega)}{K_D(\Omega)} \]

- Interaction between \(\tilde{a}(0, \Omega) \) and \(\tilde{a}(0, -\Omega) \) due to nonlinearity
- \(a(0, T) \in \mathbb{R} \iff \tilde{a}(z, \Omega) = \tilde{H}(\Omega, z)\Lambda(\Omega) \)
Noise-only input

White Gaussian noise

\[\tilde{a}(0, \Omega) \sim \mathcal{CN}(0, \sigma^2) \rightarrow \tilde{a}(z, \Omega) \sim \mathcal{CN}(0, \sigma_{\tilde{a}}^2) \]

\[\rightarrow |\tilde{a}(z, \Omega)| \sim \text{Rayleigh}(\sigma_{\tilde{a}}) \rightarrow |\tilde{a}(z, \Omega)|^2 / \sigma_{\tilde{a}}^2 \sim \chi_2^2 \]

\[\sigma_{\tilde{a}}^2 = \sigma^2 \left| \frac{e^{-i\tilde{B}(\Omega)z}}{K_D(\Omega)} \right|^2 \left\{ |\tilde{M}(\Omega) \sin(K_D(\Omega)z)|^2 + \right. \]

\[+ \left. |K_D(\Omega) \cos(K_D(\Omega)z) - (\tilde{N}(\Omega) - i\tilde{B}(\Omega)) \sin(K_D(\Omega)z)|^2 \right\}. \]
Noise-only input

@ 10 mm (top) and @ 40 mm (bottom)
Noise-only input

Histograms of $|\tilde{a}(z, \Omega)|$ for $z = 10$ mm

$f = 26.758$ THz (left) and $f = -26.758$ THz (right)
Two metrics from supercontinuum generation

Coherence - Dudley, Coen and Genty (2006)

\[g_{12}(z, \Omega) = \frac{\langle \tilde{a}^*_k(z, \Omega)\tilde{a}_l(z, \Omega) \rangle_{k \neq l}}{\sqrt{\langle |\tilde{a}_k(z, \Omega)|^2 \rangle \langle |\tilde{a}_l(z, \Omega)|^2 \rangle}} \]

- In our setting: \(g_{12}(z, \Omega) = 0 \)

Signal-to-noise ratio - Sørensen et al. (2012)

\[\text{SNR}(\Omega) = \frac{\langle |\tilde{a}(z, \Omega)|^2 \rangle}{\sqrt{\text{Var} \ (|\tilde{a}(z, \Omega)|^2)}} \]

- In our setting: \(\text{SNR}(\Omega) = 1 \)
Textbook case

Tractable example as a sanity check

\(\beta_2 < 0 \) (anomalous dispersion), \(\beta_k = 0 \) for \(k > 2 \), \(\gamma_n = 0 \) for \(n > 0 \), \(\tilde{R}(\Omega) = 1 \)

\[
\sigma_{\tilde{a}}^2 = \begin{cases}
\sigma^2 \left\{ 1 + \left[\frac{2 (\frac{\Omega_c}{\Omega})^4}{\left(\frac{\Omega_c}{\Omega} \right)^2 - 1} \right] \sinh^2 \left(\frac{z |\beta_2| \Omega^2}{2} \sqrt{\left(\frac{\Omega_c}{\Omega} \right)^2 - 1} \right) \right\} & \Omega < \Omega_c \\
\sigma^2 \left\{ 1 + \left[\frac{2 (\frac{\Omega_c}{\Omega})^4}{1 - \left(\frac{\Omega_c}{\Omega} \right)^2} \right] \sin^2 \left(\frac{z |\beta_2| \Omega^2}{2} \sqrt{1 - \left(\frac{\Omega_c}{\Omega} \right)^2} \right) \right\} & \Omega > \Omega_c
\end{cases}
\]

\(\Omega_c = 4 \gamma_0 P_0 / |\beta_2| \)
Textbook case

Approximation for large \(z \)

\[
\sigma_{\tilde{a}}^2 \approx \sigma^2 \left\{ 1 + \alpha z \left[e^{-\frac{(\Omega - \Omega z)^2}{W_z}} + e^{-\frac{(\Omega + \Omega z)^2}{W_z}} \right] \right\} \rightarrow
\]

\[
r_a(z, \tau) \approx \sigma^2 \left\{ \delta(\tau) + \frac{8 \sinh^2 \left(\frac{z}{L_{NL}} \right)}{\sqrt{\pi} |\beta_2| z} e^{-\frac{\tau^2}{4|\beta_2|^2 z}} \cos \left(\frac{\Omega_c}{\sqrt{2}} \tau \right) \right\}.
\]

\[
L_{NL} = (\gamma_0 P_0)^{-1}
\]

- **periodicity** → breakup of the CW pump into pulses with a period

\[
\approx \sqrt{2}/\Omega_c
\]
Noisy input

Additive white Gaussian noise

\[a(0, \Omega) = \tilde{s}(\Omega) + \eta(\Omega), \quad \eta(\Omega) \sim \mathcal{CN}(0, \sigma_a^2) \]

- Relevant for controlling the generation of rogue waves - Solli, Ropers & Jalali (2008); Dudley, Genty & Eggleton (2008); Sørensen et al. (2012)
- We developed analytical expressions for the coherence and SNR of the resulting spectrum (accepted at Phys. Rev. A)
Seeded coherence

Seed frequencies: $\Omega_1 = 31$ GHz and $\Omega_2 = 46$ GHz
Seeded coherence

A simple case: One-sided seed, $\tilde{s}(\Omega) = 0$ for $\Omega < 0$

- No self-steepening and no Raman: $\gamma_n = 0$ for $n \geq 1$, $\tilde{R}(\Omega) = 1$
- Net MI gain: $g(\Omega) = 2\text{Im}\{K_D(\Omega)\}$

$z \ll L_{NL}$

$$g_{12}(z, \Omega) \approx \begin{cases}
1 - \left(1 + \left(\frac{z}{L_{NL}}\right)^2\right) \frac{\sigma^2}{|\tilde{s}(|\Omega|)|^2} & \Omega > 0, \\
1 - \left(2 + \left(\frac{L_{NL}}{z}\right)^2\right) \frac{\sigma^2}{|\tilde{s}(|\Omega|)|^2} & \Omega < 0.
\end{cases}$$

$g(\Omega)z \gg 1$

$$g_{12}(z, \Omega) \approx 1 - 2 \frac{\sigma^2}{|\tilde{s}(|\Omega|)|^2}$$
Conclusions

So far

- Analytical expressions for the spectral evolution of a perturbation to a continuous pump propagating in an optical fiber, including all relevant effects
- First steps in the analysis of the interaction of noise with the nonlinearity
 - Analytical results for some metrics of supercontinuum generation, such as coherence, for noisy inputs

Ongoing work

- Beyond the undepleted pump approximation
- Influence of seeding on the generation of coherent rogue waves
Questions?
References

- Akhmediev & Korneev, Theoretical and Mathematical Physics 69(2), 1089 (1986)
- Dudley, Genty & Eggleton, Optics Express 16, 3644 (2008)
- Shabat & Zakharov, Soviet Physics JETP 34, 62 (1972)
- Solli et al., Nature 450(7172), 1054 (2007)
Perturbation to the stationary solution

Ansatz: \(a(z, \Omega) = D \exp(iK(\Omega)z) \)

\[
K(\Omega) = -\tilde{B}(\Omega) \pm K_D(\Omega) = -\tilde{B}(\Omega) \pm \sqrt{\tilde{B}^2(\Omega) - \tilde{C}(\Omega)}
\]

\[
\tilde{B}(\Omega) = -\left[\tilde{\beta}_o(\Omega) + P_0\tilde{\gamma}_o(\Omega) (1 + \tilde{R}(\Omega)) \right]
\]

\[
\tilde{C}(\Omega) = \tilde{\beta}_o^2(\Omega) - \tilde{\beta}_e^2(\Omega) + P_0^2 (\tilde{\gamma}_o^2(\Omega) - \tilde{\gamma}_e^2(\Omega)) (1 + 2\tilde{R}(\Omega)) - P_0^2 \gamma_0^2 + 2P_0\gamma_0\tilde{\beta}_e(\Omega) + 2P_0^2\gamma_0\tilde{\gamma}_e(\Omega) (1 + \tilde{R}(\Omega)) + 2P_0 \left(\tilde{\beta}_o\tilde{\gamma}_o - \tilde{\beta}_e\tilde{\gamma}_e \right) (1 + \tilde{R}(\Omega))
\]

\[
\tilde{\beta}_e(\Omega) = \sum_{n \geq 1} \frac{\beta_{2n}}{(2n)!} \Omega^{2n}
\]

\[
\tilde{\beta}_o(\Omega) = \sum_{n \geq 1} \frac{\beta_{2n+1}}{(2n+1)!} \Omega^{2n+1}
\]

\[
\tilde{\gamma}_e(\Omega) = \sum_{n \geq 0} \frac{\gamma_{2n}}{(2n)!} \Omega^{2n}
\]

\[
\tilde{\gamma}_o(\Omega) = \sum_{n \geq 0} \frac{\gamma_{2n+1}}{(2n+1)!} \Omega^{2n+1}
\]